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Abstract- Application of Elliptic Curve Method (ECM) in 
cryptography popularly known as Elliptic Curve Cryptography 
(ECC) has been discussed in this paper. Finally the performance 
of ECC in security and moreover, its recent trends has been 
discussed.   
Keywords: Elliptic Curve Cryptography(ECC), Integer 
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1. INTRODUCTION 
Elliptic Curve Method(ECM) was applied on cryptography 
known as ECC was discovered in 1985 by Victor Miller 
(IBM) and Neil Koblitz (University of Washington) as an 
alternative mechanism for implementing public-key 
cryptography (PKC) [Vm85]. Elliptic Curve Cryptography 
(ECC) has the special characteristic that to date, the best 
known algorithm that solves it runs in full exponential time. 
Its security comes from the Elliptic Curve Logarithm, which 
is the Discrete Logarithm Problem (DLP) in a group defined 
by points on an elliptic curve over a finite field. These results 
in a dramatic decrease in key size needed to achieve the same 
level of security offered in conventional public key 
cryptography schemes. 
In constrained environments such as mobile phones, wireless 
pagers or personal digital assistant(PDA), the resources like 
bandwidth, memory and battery life are highly limited. Thus, 
a suitable public key scheme would be one that is efficient in 
terms of computing costs and key sizes[Dmd04]. To date, the 
ECC has the highest strength-per-bit compared to other 
public key cryptosystems. Small key sizes translate into 
savings in bandwidth, memory and processing power. This 
makes ECC the obvious choice in this situation. 
Examinations of the different mathematical problems that 
underlie the majority of the public key cryptosystems in use 
recently along with the algorithms that are used to overcome 
them have been discussed in the following sections. This will 
give us a better understanding of the security on which 
different types of public key cryptosystems are based. An 
overview of comparisons in the performance of ECC with 
other PKC applications is provided followed by ECC 
applications in constrained devices, as well as in powerful 
computers.  
Initially, we begin  by introducing the three mathematical 
problems and the various algorithms that are used to 
overcome them followed by comparisons in the performance 
of ECC with other PKC applications.  

  

2. HARDNESS OF MATHEMATICAL TECHNIQUES IN PUBLIC 

KEY CRYPTOGRAPHY 
PKCs security essentially is based on the difficulty of solving 
an integer factorization problem (IFP). Nowadays, there are 
three shortcomings that are believed to be both secure and 
practical after years of intensive studying. They are the (1) 
IFP, (2) Finite Field Discrete Logarithm Problem (FFDLP) 
and the (3) Elliptic Curve Discrete Logarithm Problem 
(ECDLP). While this by no means proves that they are 
unbreakable, it is highly unlikely that anyone will find an 
efficient algorithm to solve them in the near future. 
2.1. IFP 
Multiplication is easy: Given p and q, it’s easy to find their 
product, n = pq. There are many efficient ways to multiply 
two large numbers, starting with the “grade-school” method 
that multiplies one number by the other digit-by-digit, and 
sums the tableau of intermediate results.  
Factoring is hard: Given such an n, it appears to be quite 
hard to recover the prime factors p and q.  
Despite hundreds of years of study of the problem, finding 
the factors of a large number still takes a long time in general. 
The fastest current methods are much faster than the simple 
approach of trying all possible factors one at a time. (Such a 
method would take on the order of n steps.) However, they 
are still expensive. For instance, it has been estimated 
recently that recovering the prime factors of a 1024-bit 
number would take a year on a machine costing US $10 
million. A 2048-bit number would require several billion 
times more work. 
The general integer factorization problem is defined as 
follows. Given a positive integer n, write n = p1

e
1p2

 e
2p3

 e
3…pk

 

e
k , where the pi are  pairwise distinct primes and each ei >  1 

[Mov97] 
Factoring algorithms 
A special-purpose factoring algorithm's running time depends 
on the properties of the number to be factored or on one of its 
unknown factors: size, special form, etc. Exactly what the 
running time depends on varies between algorithms. Trial 
division, Wheel factorization, Pollard's rho algorithm, 
Algebraic-group factorisation algorithms(among which 
are Pollard's p − 1 algorithm, Williams' p + 1 algorithm, 
and Lenstra elliptic curve factorization) , Fermat's 
factorization method, Euler's factorization method, Special 
number field sieve all these are special purpose factoring 
algorithms. 
Kraitchik family algorithm, general  purpose algorithms  has 
a running time depends solely on the size of the integer to be 
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factored. This is the type of algorithm used to factor RSA 
numbers. Most general-purpose factoring algorithms are 
based on the congruence of squares method. Dixon’s 
algorithm, Continued fraction factorization (CFRAC), 
Quadratic sieve, General number field sieve, Shanks' square 
forms factorization (SQUFOF) belongs to the family of  
Kraitchik. Heuristically expected running time of these 

algorithms is ݊ܮ ቂଵ

ଶ
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The Schnorr-Seysen-Lenstra probabilistic algorithm has been 
rigorously proven by Lenstra and Pomerance to have 

expected running time   ࡸ ቂ


 ,     .ሺሻቃ  [Len92]

General number field sieve (GNFS)  is the 
most efficient classical algorithm known for factoring 
integers larger than100digits. Heuristically, its complexity 
 for factoring an integer n (consisting of log2 n bits) is of the 
form 
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On a quantum computer, to factor an integer N, Shor's 
algorithm runs in polynomial time .The time taken is 
polynomial in log N, which is the size of the input. 
Specifically it takes time O((log N)3), demonstrating that the 
integer factorization problem can be efficiently solved on a 
quantum computer. This is exponentially faster than the most 
efficient known classical factoring algorithm, the general 
number field sieve, which works in sub-exponential time— 
about O(e1.9 (log N)1/3 (log log N)2/3). [Shp97, Shp98] 
Typically, in practical cryptographic applications, only two 
factors are used for the modulus  n. A larger number of 
factors for n does not seem to offer any additional security in 
the IFP. The best-known public key cryptosystem that bases 
its security on the difficulty of the IFP is RSA. Named after 
its inventors: Ron Rivest, Adi Shamir  and Len Adleman who 
developed it at MIT in 1978, it was the first practical 
implementation of public key cryptography since the 
introduction of the concept[Rsa79]. Another example is the 
Rabin-Williams cryptosystem. It is similar to  RSA, but it 
uses an even public exponent . 
Two of the most extensively used factoring algorithms today 
are the quadratic sieve (QS) and number field sieve (NFS). 
They are both based on the idea of finding a factor base of 
primes to generate a system of linear equations[Mov97]. 
 
2.2 FFDLP 
In mathematics, specifically in abstract algebra and its 
applications, discrete logarithms are group-
theoretic analogues of ordinary logarithms. In particular, an 
ordinary logarithm loga(b) is a solution of the 
equation ax = b over the real or complex numbers. Similarly, 
if g and h are elements of a finite cyclic group G then a 
solution x of the equation gx = h is called a discrete logarithm 
to the base g of h in the group G.  

Discrete logarithms are perhaps simplest to understand in the 
group (Zp)

× . This is the set {1, …, p − 1} of  congruence  
classes under multiplication modulo the prime p. 
Discrete exponentiation is  finding  kth power as an integer of 
the group and then finding the remainder after division by p. 
For example, consider (Z17)

×. To compute 34 in this group, 
we first compute 34 = 81, and then we divide 81 by 17, 
obtaining a remainder of 13. Thus 34 = 13 in the group (Z17)

×. 
Discrete logarithm is just the inverse operation. For example, 
take the equation 3k ≡ 13 (mod 17) for k. As shown 
above k=4 is a solution, but it is not the only solution. Since 
316 ≡ 1 (mod 17), it also follows that if n is an integer then 
34+16 n ≡ 13 ×1n ≡ 13 (mod 17). Hence the equation has 
infinitely many solutions of the form 4 + 16n. Moreover, 
since 16 is the smallest positive integer m satisfying 3m ≡ 1 
(mod 17), i.e. 16 is the order of 3 in (Z17)

×, these are the only 
solutions. Equivalently, the solution can be expressed as k ≡ 4 
(mod 16).[Wpd12] 
More sophisticated algorithms exist like Baby-step giant-step 
(The running time of the algorithm and the space complexity 
is O(√݊)), Pollard's rho algorithm(The running time is 
approximately O(ඥ) where p is n's smallest prime 
factor.[Plo78]), Pollard's kangaroo algorithm  also known as 
Pollard's lambda algorithm (Time complexity of which is  

ܱሺ√ܾ െ ܽሻ ൌ ሺ݁  
భ
మ

୪୭ሺିሻሻ is exponential in the problem 
size[Pka00]). For this reason, Pollard's lambda algorithm is 
considered an exponential time algorithm. The worst-case 
time complexity of the Pohlig–Hellman algorithm  is ܱሺ√݊ሻ 
[Phe78]). Assuming an optimal selection of the factor base, 
Index calculus algorithm the expected running time  of the 

index-calculus algorithm can be stated as  ݊ܮ ቂଵ

ଶ
, ܿቃ c >0   

[Adl79].The running time of the number field sieve is super-
polynomial but sub-exponential in the size of the 
input.[Len92, Len93]. ,Function field sieve  inspired by 
similar algorithms for integer factorization. These algorithms 
run faster than the naive algorithm, but none of them runs 
in polynomial time (in the number of digits in the size of the 
group). 
The origin of using the discrete logarithm problem in 
cryptographic schemes goes back to the seminal paper of 
Diffie and Hellman[Dh76]. It is there that they proposed the 
discrete logarithm problem as good source for a “one way 
function”  . Other cryptographic applications that base their 
security on the intractability of  the DLP include the ElGamal 
encryption scheme and the digital signature algorithm (DSA). 
DLP in a prime field is considered to be harder than DLP in 
fields of characteristic two. The current record for computing 
discrete logarithms in GF(p) is a 120-digit prime p[Kap99] 
The most powerful algorithm known for computing the DLP 
is the index calculus method. It is a probabilistic algorithm 
that applies only to finite fields. Examples of finite fields that 
are commonly used in practical applications are GF(p) and 
GF(2m). The index-calculus method is currently the only 
known algorithm that solves the DLP in sub-exponential 
time, making it the champion of all DL algorithms. All the 
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other Algorithms that solve the DLP for arbitrary groups  run 
in full exponential time. 
There exist groups for which computing discrete logarithms 
is apparently difficult. In some cases (e.g. large prime order 
subgroups of groups (Zp)

×) there is not only no efficient 
algorithm known for the worst case, but the average-case 
complexity can be shown to be about as hard as the worst 
case using random self-reducibility. Popular choices for the 
group G in discrete logarithm cryptography are the cyclic 
groups (Zp)

×; Newer cryptography applications use discrete 
logarithms in cyclic subgroups of elliptic curves over finite 
fields[Tel85] 
 
2.3 ECDLP 
In 1985, Neal Koblitz and Victor Miller independently 
proposed the concept of ECC[Kob87,Mv85]. Other work on 
the security and implementation of elliptic curve 
cryptosystems (ECC) was reported in Menezes, Okamoto and 
Vanstone [Mov93, Asv93]. It is based on the DLP in a group 
defined by points on an elliptic curve over a finite field. The 
discrete logarithm problem has been adapted to elliptic curves 
in the hopes of providing even more security[Ame93]. The 
basic idea is that, for any prime p, there is only one field, Fp. 
For elliptic curves, however, the number of possible elliptic 
curves over Fp is extremely large, even for small values of p 
[Mov93]. The security of Elliptic Curve Cryptosystems relies 
on the difficulty of the ECDLP[Asv93].  The ECDLP is 
elucidated as follows: 
Let E (Fp) denote an elliptic curve taking values in  finite 
field Fp, and B Є E (Fp) denote a point on the curve E. Then, 
given the additive structure of the points, and kB = B + B + · · 
· + B (k times). ECDLP is defined as : Given a basepoint B, 
and elliptic curve E, and a point P Є E (Fp) such that  P = kB 
.Calculate the value of k. While it is customary to use 
additive notation to describe an elliptic curve group, some 
insight is provided by using multiplicative notation. 
Specifically, consider the operation called "scalar 
multiplication" under additive notation: that is, computing kB 
by adding together k copies of the point B. Using 
multiplicative notation, this operation consists of multiplying 
together k copies of the point B, yielding the point Bk.  
In the multiplicative group Zp*, the discrete logarithm 
problem is: given elements r and q of the group, and a prime 
p, find a number k such that r = qk mod p. If the elliptic curve 
groups is described using multiplicative notation, then the 
elliptic curve discrete logarithm problem is: given points P 
and Q in the group, find a number that Pk = Q; k is called the 
discrete logarithm of Q to the base P. When the elliptic curve 
group is described using additive notation, the elliptic curve 
discrete logarithm problem is: given points P and Q in the 
group, find a number k such that Pk = Q [Mwp09] 
The discrete logarithm problem is the basis for the security of 
many cryptosystems including the ECC. More specifically, 
the ECC relies upon the difficulty of the ECDLP. The 
ECDLP is based upon the intractability of scalar 
multiplication products. Implementations of ECC include 

elliptic curve analogs of DSA (ECDSA), ElGamal and Diffie-
Hellman [Dah04]. 
 
ECDLP algorithms 
The most attractive feature of ECC is that at present, the 
fastest known algorithm that solves it run in full exponential 
time. Despite the fact that index calculus methods can 
compute conventional logarithms in sub-exponential time, 
they cannot be applied to the case of discrete logarithms over 
elliptic curves. This is a claim made by Miller in his 1986 
paper, which was later backed by theoretical study and 
computational experiments by J. H. Silverman and Suzuki in 
their paper published in 1998. 
ECC security consists in the difficulty to calculate logarithms 
in discrete fields (discrete logarithms problem): being given A 
(an element from a finite field) and Ax, it is practically 
impossible to calculate x when A is big 
enough.[Kra09,Krb09] 
For elliptic-curve-based protocols, it is assumed that finding 
the discrete logarithm of a random elliptic curve element with 
respect to a publicly-known base point is infeasible. The size 
of the elliptic curve determines the difficulty of the problem. 
The primary benefit promised by ECC is a smaller key size, 
reducing storage and transmission requirements[Ita09]—i.e., 
that an elliptic curve group could provide the same level of 
security afforded by an RSA-based system with a large 
modulus and correspondingly larger key[Rsh09] —e.g., a 
256bit ECC public key should provide comparable security to 
a 3072bit RSA public key. The entire security of ECC 
depends on the ability to compute a point multiplication and 
the inability to compute the multiplicand given the original 
and product points. 
Several discrete logarithm-based protocols have been adapted 
to elliptic curves, replacing the group Zp* with an elliptic 
curve like the elliptic curve Diffie–Hellman (ECDH) key 
agreement scheme is based on the Diffie–Hellman scheme, 
the Elliptic Curve Integrated Encryption Scheme (ECIES), 
also known as Elliptic Curve Augmented Encryption Scheme 
or simply the Elliptic Curve Encryption Scheme, the Elliptic 
Curve Digital Signature Algorithm (ECDSA) is based on 
the Digital Signature Algorithm, the ECMQV key agreement 
scheme is based on the MQV key agreement scheme. 
the ECQV implicit certificate scheme. 
To date the best attack on ECCs  are Pollard’s ρ or λ method; 
both of which have expected exponential running  times and 
hence are infeasible given today’s technology[Cw97]. This 
suggests that elliptic curve cryptosystems are superior to 
currently deployed public key cryptosystems since not only 
do they offer a greater level of security when the underlying 
parameters are chosen correctly, but they offer a greater 
advantage due to factors including shorter key sizes, faster 
generation of systems, smaller space requirements and 
efficient implementation techniques. Elliptic curve 
cryptography is vulnerable to a modified Shor's algorithm for 
solving the discrete logarithm problem on elliptic curves 
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Weak curves: There are certain types of elliptic curves in 
which a successful attack could take place in sub-exponential 
time. If identified, these curves can easily be tested for and 
avoided. So far, several classes of curves have been identified 
and prohibited in all drafted standard specifications for public 
key cryptography such as IEEE P1363, ANSI X9.62 and 
ANSI X9.63 . Such curves are called the supersingular curves 
and anomalous curves[Cw97]. 
Due to work of Menezes, Okamoto and Vanstone, it is 
already known that one must avoid elliptic curves which are 
supersingular, these are the curves which have trace of 
frobenius equal to zero. Menezes, Okamoto and Vanstone 
reduce the discrete logarithm problem on supersingular 
elliptic curves to the discrete logarithm problem in a finite  
field. They hence reduce the problem to one which is known 
to have sub-exponential complexity.In practice the method 
described means that when choosing elliptic curves to use in 
cryptography one has to eliminate all curves whose group 
orders are equal to the order of the finite field , in other words 
curves for which the trace of Frobenius is equal to 
one[Cw97].  To solve the discrete log problem in a subgroup 
of order p of an elliptic curve over the finite field of 
characteristic p one needs O(ln p) operations in this field. 
When time is measured in terms of the number of basic group 
operations , the discrete logarithm problem on this curve runs 
in linear time that one must perform.[Mov93] 
The other class of curves, the anomalous curves, allows an 
even more efficient attack when applicable. Proposed 
independently in 1998 by Satoh andAraki, Semaev, and the 
following year by Smart, this type of curves allow the 
ECDLP to be solved in polynomial time by reducing it to the 
classical DLP in an additive group GF(p) [Kap99]. Further 
readings can be found in [Sak98, Sia98, Smn99]. 
NIST-recommended elliptic curves 
NIST recommends fifteen elliptic curves. Specifically, FIPS 
186-3 has ten recommended finite fields: 
 Five prime fields Fp for certain primes p of sizes 192, 

224, 256, 384, and 521 bits. For each of the prime fields, 
one elliptic curve is recommended. 

 Five binary fields F2
m for m equal 163, 233, 283, 409, 

and 571. For each of the binary fields, one elliptic curve 
and one Koblitz curve is recommended. 

The NIST recommendation thus contains a total of five prime 
curves and ten binary curves. The curves were chosen for 
optimal security and implementation efficiency[SEC00] 

   
THE ECC ADVANTAGE 

It is worthy to note that a 160-bit ECC key has about the 
same level of security as a 1024-bit RSA key. The most 
important difference between ECC and other conventional 
cryptosystems is that for a well-chosen curve, the best 
method currently known for solving the ECDLP is fully 
exponential, while sub-exponential algorithms exist for 
conventional cryptosystems. This difference largely 
contributes to the huge disparity in their respective running 
times.  It also means that ECC keys have much fewer bits 
than IFP and DLP based applications. The contrast in key 

lengths of RSA, DSA and ECC are shown in the Figure 1 
[Mov97]. 
Clearly, ECC keys take much more effort to break compared 
to RSA and DSA keys. Due to this, many people believe that 
ECDLP is intrinsically harder than the other two problems. 
While this deduction might be true, we have no way of 
proving it. We do not know if a fast and efficient elliptic 
curve DL algorithm that runs in sub-exponential time will be 
discovered, say, in the next ten years, or if another class of 
weak curves will be identified that could compromise the 
security of elliptic curve cryptosystems. But one thing is 
certain. After years of intensive study, there is currently no 
faster way to attack the ECDLP other than fully exponential 
algorithms. 

 
Figure 1: Comparison of Security levels ECC and RSA & 

DSA[Mov97] 
 

From the advantages of ECC usage, there can be mentioned: 
 increased security: cryptographic resistance per bit is 

much greater than those of any public-key 
cryptosystem known at present time; 

 substantial economies in calculus and memory needs 
in comparison with other cryptosystems; 

 great encryption and signing speed both in software 
and hardware implementation; 

 ECC are ideal for small size hardware 
implementations (as intelligent cards); 

 encryption and signing can be done in separate 
stages. 
 

APPLICATIONS OF ECC 
The intense research done on public-key cryptosystems, 
based on elliptic curves, demonstrated that ECC are suitable 
for the vast majority of existing applications. The elliptic 
curves are suitable in applications where the computing 
power is limited (intelligent cards, wireless devices, PC 
boards), memory size on integrated circuit is limited, a great 
speed of computing is necessary, digital signing and its 
verification are used intensively, signed messages have to be 
transmitted or memorized, digital bandwidth is limited 
(mobile communications, certain computer networks).  
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CONCLUSIONS AND FUTURE SCOPE 
ECM belongs to a general class of curves, called hyperelliptic 
curves, of which elliptic curves is a special case, with genus, 
g=1. Hyperelliptic curves were initially candidates, to the 
next progression, or generalizations, to more secure systems, 
as they appeared to require even shorter key lengths than 
elliptic curves for the same level of security. It is found, 
however, that hyperelliptic curves of genus g=4, or higher, do 
not have the same level of security, as genus 2 or 3 curves, 
where attacks of sub-exponential time algorithms have been. 
Hence elliptic curves are the optimal practical solution from 
this family of curves.   
A class of curves, known as the Koblitz curves, is particularly 
favorable because it was shown to be very efficient in 
computing ord(P) for arbitrary P on the curve, which can in 
turn be used to derive #E(Fp) quickly. 
In this paper, two attacks against improperly chosen elliptic 
curves and their underlying fields, but this by no means an 
extensive list has been covered.  There are multiple other 
attacks against curve over prime fields as well as attacks 
against curves over binary fields. Suffice to say, anyone 
implementing an ECC needs to be aware of these potentially 
harmful curve choices and correctly mitigate them in their 
system.   
This suggests that ECCs are superior to currently deployed 
public key cryptosystems since not only do they offer a 
greater level of security when the underlying parameters are 
chosen correctly, but they offer a greater advantage due to its 
shorter key sizes, faster generation of systems, smaller space 
requirements and efficient implementation techniques. 
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